1.

For $0 \le t \le 31$, the rate of change of the number of mosquitoes on Tropical Island at time t days is modeled by $R(t) = 5\sqrt{t}\cos\left(\frac{t}{5}\right)$ mosquitoes per day. There are 1000 mosquitoes on Tropical Island at time t = 0.

- (a) Show that the number of mosquitoes is increasing at time t = 6.
- (b) At time t = 6, is the number of mosquitoes increasing at an increasing rate, or is the number of mosquitoes increasing at a decreasing rate? Give a reason for your answer.
- (c) According to the model, how many mosquitoes will be on the island at time t = 31? Round your answer to the nearest whole number.
- (d) To the nearest whole number, what is the maximum number of mosquitoes for $0 \le t \le 31$? Show the analysis that leads to your conclusion.

2.

t (hours)	0	2	5	7	8
E(t) (hundreds of entries)	0	4	13	21	23

A zoo sponsored a one-day contest to name a new baby elephant. Zoo visitors deposited entries in a special box between noon (t = 0) and 8 P.M. (t = 8). The number of entries in the box t hours after noon is modeled by a differentiable function E for $0 \le t \le 8$. Values of E(t), in hundreds of entries, at various times t are shown in the table above.

- (a) Use the data in the table to approximate the rate, in hundreds of entries per hour, at which entries were being deposited at time t = 6. Show the computations that lead to your answer.
- (b) Use a trapezoidal sum with the four subintervals given by the table to approximate the value of $\frac{1}{8} \int_0^8 E(t) dt$. Using correct units, explain the meaning of $\frac{1}{8} \int_0^8 E(t) dt$ in terms of the number of entries.
- (c) At 8 P.M., volunteers began to process the entries. They processed the entries at a rate modeled by the function P, where $P(t) = t^3 30t^2 + 298t 976$ hundreds of entries per hour for $8 \le t \le 12$. According to the model, how many entries had not yet been processed by midnight (t = 12)?
- (d) According to the model from part (c), at what time were the entries being processed most quickly? Justify your answer.

The tide removes sand from Sandy Point Beach at a rate modeled by the function R, given by

$$R(t) = 2 + 5\sin\left(\frac{4\pi t}{25}\right).$$

A pumping station adds sand to the beach at a rate modeled by the function S, given by

$$S(t) = \frac{15t}{1+3t}.$$

Both R(t) and S(t) have units of cubic yards per hour and t is measured in hours for $0 \le t \le 6$. At time t = 0, the beach contains 2500 cubic yards of sand.

- (a) How much sand will the tide remove from the beach during this 6-hour period? Indicate units of measure.
- (b) Write an expression for Y(t), the total number of cubic yards of sand on the beach at time t.
- (c) Find the rate at which the total amount of sand on the beach is changing at time t = 4.
- (d) For $0 \le t \le 6$, at what time t is the amount of sand on the beach a minimum? What is the minimum value? Justify your answers.

4.

There is no snow on Janet's driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by $f(t) = 7te^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. (t = 6). The rate g(t), in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$g(t) = \begin{cases} 0 & \text{for } 0 \le t < 6 \\ 125 & \text{for } 6 \le t < 7 \\ 108 & \text{for } 7 \le t \le 9 \end{cases}.$$

- (a) How many cubic feet of snow have accumulated on the driveway by 6 A.M.?
- (b) Find the rate of change of the volume of snow on the driveway at 8 A.M.
- (c) Let h(t) represent the total amount of snow, in cubic feet, that Janet has removed from the driveway at time t hours after midnight. Express h as a piecewise-defined function with domain 0 ≤ t ≤ 9.
- (d) How many cubic feet of snow are on the driveway at 9 A.M.?